Another Introduction to GIS

There are several definitions used while explaining geographic information systems (GIS).  One of the most popular definitions for GIS is “a computer-based system to aid in the collection, maintenance, storage, analysis, output, and distribution of spatial data and information. (Bolstad)”  GIS helps us gather and use spatial data;  it is concerned with absolute and relative location of features (the where) and it’s concerned with properties and attributes of those features (the what).

GIS quantifies locations by recording their coordinate positions on Earth (latitude/longitude).  GIS tools are essential in business, government, education, and non-profit organizations (Bolstad).  It helps us identify and address environmental problems by providing information on where the problems occur and who are affected by them.  Using GIS we are able to identify the source, location, and extent of environmental impacts.

Advances in three key technologies have helped aid in the development of GIS; imaging, GNSS, and computing.  Cameras these days provide detailed aerial and satellite images, images can be easily converted to accurate spatial information over broad areas.  Global Navigation Satellite Systems (GNSS) is a positioning technology that’s now incorporated in cars, planes, boats, and trucks. Powerful field computers are now lighter, faster, more capable, and less expensive, allowing spatial data display and analysis capabilities to always be at hand.

Geographic information science (GISci) includes the technical aspects of GIS as well as seeks to redefine concepts in geography in the context of the digital age, making GIS dependent on GISci.  GISci not only investigates technical questions but also explores more basic questions, such as, “How might we best represent spatial concepts? (Bolstad)”

 

 

Reference:

 

Bolstad, Paul. (2012).  GIS Fundamentals:  A First Text on Geographic Information Systems.  White Bear Lake, MN:  Eider Press.